Papers
Topics
Authors
Recent
2000 character limit reached

Relaxing the I.I.D. Assumption: Adaptively Minimax Optimal Regret via Root-Entropic Regularization

Published 13 Jul 2020 in stat.ML and cs.LG | (2007.06552v3)

Abstract: We consider prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. This semi-adversarial setting includes (at the extremes) the classical i.i.d. setting, when the unknown constraint set is restricted to be a singleton, and the unconstrained adversarial setting, when the constraint set is the set of all distributions. The Hedge algorithm -- long known to be minimax (rate) optimal in the adversarial regime -- was recently shown to be simultaneously minimax optimal for i.i.d. data. In this work, we propose to relax the i.i.d. assumption by seeking adaptivity at all levels of a natural ordering on constraint sets. We provide matching upper and lower bounds on the minimax regret at all levels, show that Hedge with deterministic learning rates is suboptimal outside of the extremes, and prove that one can adaptively obtain minimax regret at all levels. We achieve this optimal adaptivity using the follow-the-regularized-leader (FTRL) framework, with a novel adaptive regularization scheme that implicitly scales as the square root of the entropy of the current predictive distribution, rather than the entropy of the initial predictive distribution. Finally, we provide novel technical tools to study the statistical performance of FTRL along the semi-adversarial spectrum.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.