Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 24 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Multi-objective Clustering Algorithm with Parallel Games (2007.05119v1)

Published 10 Jul 2020 in cs.GT and cs.LG

Abstract: Data mining and knowledge discovery are two important growing research fields in the last two decades due to the abundance of data collected from various sources. The exponentially growing volumes of generated data urge the development of several mining techniques to feed the needs for automatically derived knowledge. Clustering analysis (finding similar groups of data) is a well-established and widely used approach in data mining and knowledge discovery. In this paper, we introduce a clustering technique that uses game theory models to tackle multi-objective application problems. The main idea is to exploit a specific type of simultaneous move games, called congestion games. Congestion games offer numerous advantages ranging from being succinctly represented to possessing Nash equilibrium that is reachable in a polynomial-time. The proposed algorithm has three main steps: 1) it starts by identifying the initial players (or the cluster-heads), 2) it establishes the initial clusters' composition by constructing the game and try to find the equilibrium of the game. The third step consists of merging close clusters to obtain the final clusters. The experimental results show that the proposed clustering approach obtains good results and it is very promising in terms of scalability and performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.