Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Weakness Analysis of Cyberspace Configuration Based on Reinforcement Learning (2007.04614v1)

Published 9 Jul 2020 in cs.AI

Abstract: In this work, we present a learning-based approach to analysis cyberspace configuration. Unlike prior methods, our approach has the ability to learn from past experience and improve over time. In particular, as we train over a greater number of agents as attackers, our method becomes better at rapidly finding attack paths for previously hidden paths, especially in multiple domain cyberspace. To achieve these results, we pose finding attack paths as a Reinforcement Learning (RL) problem and train an agent to find multiple domain attack paths. To enable our RL policy to find more hidden attack paths, we ground representation introduction an multiple domain action select module in RL. By designing a simulated cyberspace experimental environment to verify our method. Our objective is to find more hidden attack paths, to analysis the weakness of cyberspace configuration. The experimental results show that our method can find more hidden multiple domain attack paths than existing baselines methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.