Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Extensions of Yang-Mills-Type Theories, Their Spaces and Their Categories (2007.01660v1)

Published 2 Jul 2020 in math-ph, math.AT, math.DG, and math.MP

Abstract: In this paper we consider the classification problem of extensions of Yang-Mills-type (YMT) theories. For us, a YMT theory differs from the classical Yang-Mills theories by allowing an arbitrary pairing on the curvature. The space of YMT theories with a prescribed gauge group $G$ and instanton sector $P$ is classified, an upper bound to its rank is given and it is compared with the space of Yang-Mills theories. We present extensions of YMT theories as a simple and unified approach to many different notions of deformations and addition of correction terms previously discussed in the literature. A relation between these extensions and emergence phenomena in the sense of arXiv:2004.13144 is presented. We consider the space of all extensions of a fixed YMT theory $SG$ and we prove that for every additive group action of $\mathbb{G}$ in $\mathbb{R}$ and every commutative and unital ring $R$, this space has an induced structure of $R[\mathbb{G}]$-module bundle. We conjecture that this bundle can be continuously embedded into a trivial bundle. Morphisms between extensions of a fixed YMT theory are defined in such a way that they define a category of extensions. It is proved that this category is a reflective subcategory of a slice category, reflecting some properties of its limits and colimits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube