Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning an arbitrary mixture of two multinomial logits (2007.00204v2)

Published 1 Jul 2020 in stat.ML, cs.CC, cs.LG, and cs.SC

Abstract: In this paper, we consider mixtures of multinomial logistic models (MNL), which are known to $\epsilon$-approximate any random utility model. Despite its long history and broad use, rigorous results are only available for learning a uniform mixture of two MNLs. Continuing this line of research, we study the problem of learning an arbitrary mixture of two MNLs. We show that the identifiability of the mixture models may only fail on an algebraic variety of a negligible measure. This is done by reducing the problem of learning a mixture of two MNLs to the problem of solving a system of univariate quartic equations. We also devise an algorithm to learn any mixture of two MNLs using a polynomial number of samples and a linear number of queries, provided that a mixture of two MNLs over some finite universe is identifiable. Several numerical experiments and conjectures are also presented.

Citations (6)

Summary

We haven't generated a summary for this paper yet.