Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guarantees for Tuning the Step Size using a Learning-to-Learn Approach (2006.16495v2)

Published 30 Jun 2020 in stat.ML and cs.LG

Abstract: Choosing the right parameters for optimization algorithms is often the key to their success in practice. Solving this problem using a learning-to-learn approach -- using meta-gradient descent on a meta-objective based on the trajectory that the optimizer generates -- was recently shown to be effective. However, the meta-optimization problem is difficult. In particular, the meta-gradient can often explode/vanish, and the learned optimizer may not have good generalization performance if the meta-objective is not chosen carefully. In this paper we give meta-optimization guarantees for the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss. Our results show that the na\"ive objective suffers from meta-gradient explosion/vanishing problem. Although there is a way to design the meta-objective so that the meta-gradient remains polynomially bounded, computing the meta-gradient directly using backpropagation leads to numerical issues. We also characterize when it is necessary to compute the meta-objective on a separate validation set to ensure the generalization performance of the learned optimizer. Finally, we verify our results empirically and show that a similar phenomenon appears even for more complicated learned optimizers parametrized by neural networks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.