Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Central limit theorems for local network statistics (2006.15738v1)

Published 28 Jun 2020 in math.ST, cs.SI, math.CO, stat.ME, and stat.TH

Abstract: Subgraph counts - in particular the number of occurrences of small shapes such as triangles - characterize properties of random networks, and as a result have seen wide use as network summary statistics. However, subgraphs are typically counted globally, and existing approaches fail to describe vertex-specific characteristics. On the other hand, rooted subgraph counts - counts focusing on any given vertex's neighborhood - are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes many popular statistical network models. This result enables a shift in the statistical analysis of large graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that local friendship patterns are significant predictors of gender and race.

Citations (6)

Summary

We haven't generated a summary for this paper yet.