Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Graphlet Statistics via Lifting (1802.08736v2)

Published 23 Feb 2018 in stat.ME and stat.ML

Abstract: Exploratory analysis over network data is often limited by the ability to efficiently calculate graph statistics, which can provide a model-free understanding of the macroscopic properties of a network. We introduce a framework for estimating the graphlet count---the number of occurrences of a small subgraph motif (e.g. a wedge or a triangle) in the network. For massive graphs, where accessing the whole graph is not possible, the only viable algorithms are those that make a limited number of vertex neighborhood queries. We introduce a Monte Carlo sampling technique for graphlet counts, called {\em Lifting}, which can simultaneously sample all graphlets of size up to $k$ vertices for arbitrary $k$. This is the first graphlet sampling method that can provably sample every graphlet with positive probability and can sample graphlets of arbitrary size $k$. We outline variants of lifted graphlet counts, including the ordered, unordered, and shotgun estimators, random walk starts, and parallel vertex starts. We prove that our graphlet count updates are unbiased for the true graphlet count and have a controlled variance for all graphlets. We compare the experimental performance of lifted graphlet counts to the state-of-the art graphlet sampling procedures: Waddling and the pairwise subgraph random walk.

Citations (19)

Summary

We haven't generated a summary for this paper yet.