Papers
Topics
Authors
Recent
2000 character limit reached

Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory

Published 28 Jun 2020 in math.NA, cs.LG, cs.NA, and math.OC | (2006.15733v2)

Abstract: The problem of solving partial differential equations (PDEs) can be formulated into a least-squares minimization problem, where neural networks are used to parametrize PDE solutions. A global minimizer corresponds to a neural network that solves the given PDE. In this paper, we show that the gradient descent method can identify a global minimizer of the least-squares optimization for solving second-order linear PDEs with two-layer neural networks under the assumption of over-parametrization. We also analyze the generalization error of the least-squares optimization for second-order linear PDEs and two-layer neural networks, when the right-hand-side function of the PDE is in a Barron-type space and the least-squares optimization is regularized with a Barron-type norm, without the over-parametrization assumption.

Citations (68)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.