Papers
Topics
Authors
Recent
2000 character limit reached

A Relaxation/Finite Difference discretization of a 2D Semilinear Heat Equation over a rectangular domain

Published 24 Jun 2020 in math.NA and cs.NA | (2006.14092v1)

Abstract: We consider an initial and Dirichlet boundary value problem for a semilinear, two dimensional heat equation over a rectangular domain. The problem is discretized in time by a version of the Relaxation Scheme proposed by C. Besse (C. R. Acad. Sci. Paris S\'er. I, vol. 326 (1998)) for the nonlinear Schr\"odinger equation and in space by a standard second order finite difference method. The proposed method is unconditionally well-posed and its convergence is established by proving an optimal second order error estimate allowing a mild mesh condition to hold.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.