Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimation of the Relaxation Finite Difference Scheme for the nonlinear Schrödinger Equation (2002.09605v1)

Published 22 Feb 2020 in math.NA and cs.NA

Abstract: We consider an initial- and boundary- value problem for the nonlinear Schr\"odinger equation with homogeneous Dirichlet boundary conditions in the one space dimension case. We discretize the problem in space by a central finite difference method and in time by the Relaxation Scheme proposed by C. Besse [C. R. Acad. Sci. Paris S\'er. I {\bf 326} (1998), 1427-1432]. We provide optimal order error estimates, in the discrete $L_t{\infty}(H_x1)$ norm, for the approximation error at the time nodes and at the intermediate time nodes. In the context of the nonlinear Schr{\"o}dinger equation, it is the first time that the derivation of an error estimate, for a fully discrete method based on the Relaxation Scheme, is completely addressed.

Citations (12)

Summary

We haven't generated a summary for this paper yet.