Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A matrix-oriented POD-DEIM algorithm applied to semilinear matrix differential equations (2006.13289v2)

Published 23 Jun 2020 in math.NA and cs.NA

Abstract: We are interested in numerically approximating the solution ${\bf U}(t)$ of the large dimensional semilinear matrix differential equation $\dot{\bf U}(t) = { \bf A}{\bf U}(t) + {\bf U}(t){ \bf B} + {\cal F}({\bf U},t)$, with appropriate starting and boundary conditions, and $ t \in [0, T_f]$. In the framework of the Proper Orthogonal Decomposition (POD) methodology and the Discrete Empirical Interpolation Method (DEIM), we derive a novel matrix-oriented reduction process leading to an effective, structure aware low order approximation of the original problem. The reduction of the nonlinear term is also performed by means of a fully matricial interpolation using left and right projections onto two distinct reduction spaces, giving rise to a new two-sided version of DEIM. By maintaining a matrix-oriented reduction, we are able to employ first order exponential integrators at negligible costs. Numerical experiments on benchmark problems illustrate the effectiveness of the new setting.

Citations (2)

Summary

We haven't generated a summary for this paper yet.