Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Numerical Approximation of Parabolic Problems Using Model Order Reduction and the Laplace Transform (2403.02847v2)

Published 5 Mar 2024 in math.NA and cs.NA

Abstract: We introduce a novel, fast method for the numerical approximation of parabolic partial differential equations (PDEs for short) based on model order reduction techniques and the Laplace transform. We start by applying said transform to the evolution problem, thus yielding a time-independent boundary value problem solely depending on the complex Laplace parameter. In an offline stage, we judiciously sample the Laplace parameter and numerically solve the corresponding collection of high-fidelity or full-order problems. Next, we apply a proper orthogonal decomposition (POD) to this collection of solutions in order to obtain a reduced basis in the Laplace domain. We project the linear parabolic problem onto this basis, and then using any suitable time-stepping method, we solve the evolution problem. A key insight to justify the implementation and analysis of the proposed method corresponds to resorting to Hardy spaces of analytic functions and establishing, through the Paley-Wiener theorem, an isometry between the solution of the time-dependent problem and its Laplace transform. As a result, one may conclude that computing a POD with samples taken in the Laplace domain produces an exponentially accurate reduced basis for the time-dependent problem. Numerical experiments portray the performance of the method in terms of accuracy and, in particular, speed-up when compared to the solution obtained by solving the full-order model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.