Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: convection-dominated regime (2006.13201v3)

Published 23 Jun 2020 in math.NA and cs.NA

Abstract: We consider the numerical approximation of the ill-posed data assimilation problem for stationary convection-diffusion equations and extend our previous analysis in [Numer. Math. 144, 451--477, 2020] to the convection-dominated regime. Slightly adjusting the stabilized finite element method proposed for dominant diffusion, we draw upon a local error analysis to obtain quasi-optimal convergence along the characteristics of the convective field through the data set. The weight function multiplying the discrete solution is taken to be Lipschitz and a corresponding super approximation result (discrete commutator property) is proven. The effect of data perturbations is included in the analysis and we conclude the paper with some numerical experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.