Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stable Mimetic Finite-Difference Method for Convection-Dominated Diffusion Equations (2208.04169v2)

Published 8 Aug 2022 in math.NA and cs.NA

Abstract: Convection-diffusion equations arise in a variety of applications such as particle transport, electromagnetics, and magnetohydrodynamics. Simulation of the convection-dominated regime for these problems, even with high-fidelity techniques, is particularly challenging due to the presence of sharp boundary layers and shocks causing jumps and discontinuities in the solution, and numerical issues such as loss of the maximum principle in the discretization. These complications cause instabilities, admitting large oscillations in the numerical solution when using traditional methods. Drawing connections to the simplex-averaged finite-element method (S. Wu and J. Xu, 2020), this paper develops a mimetic finite-difference (MFD) discretization using exponentially-averaged coefficients to overcome instability of the numerical solution as the diffusion coefficient approaches zero. The finite-element framework allows for transparent analysis of the MFD, such as proving well-posedness and deriving error estimates. Numerical tests are presented confirming the stability of the method and verifying the error estimates.

Citations (2)

Summary

We haven't generated a summary for this paper yet.