Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Term Prediction of Lane Change Maneuver Through a Multilayer Perceptron (2006.12769v1)

Published 23 Jun 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Behavior prediction plays an essential role in both autonomous driving systems and Advanced Driver Assistance Systems (ADAS), since it enhances vehicle's awareness of the imminent hazards in the surrounding environment. Many existing lane change prediction models take as input lateral or angle information and make short-term (< 5 seconds) maneuver predictions. In this study, we propose a longer-term (5~10 seconds) prediction model without any lateral or angle information. Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model, and their performances are compared by using the real-world NGSIM dataset. To properly label the trajectory data, this study proposes a new time-window labeling scheme by adding a time gap between positive and negative samples. Two approaches are also proposed to address the unstable prediction issue, where the aggressive approach propagates each positive prediction for certain seconds, while the conservative approach adopts a roll-window average to smooth the prediction. Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhenyu Shou (6 papers)
  2. Ziran Wang (49 papers)
  3. Kyungtae Han (33 papers)
  4. Yongkang Liu (35 papers)
  5. Prashant Tiwari (10 papers)
  6. Xuan Di (32 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.