Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Future Lane Changes of Other Highway Vehicles using RNN-based Deep Models (1801.04340v4)

Published 12 Jan 2018 in cs.RO and cs.LG

Abstract: In the event of sensor failure, autonomous vehicles need to safely execute emergency maneuvers while avoiding other vehicles on the road. To accomplish this, the sensor-failed vehicle must predict the future semantic behaviors of other drivers, such as lane changes, as well as their future trajectories given a recent window of past sensor observations. We address the first issue of semantic behavior prediction in this paper, which is a precursor to trajectory prediction, by introducing a framework that leverages the power of recurrent neural networks (RNNs) and graphical models. Our goal is to predict the future categorical driving intent, for lane changes, of neighboring vehicles up to three seconds into the future given as little as a one-second window of past LIDAR, GPS, inertial, and map data. We collect real-world data containing over 20 hours of highway driving using an autonomous Toyota vehicle. We propose a composite RNN model by adopting the methodology of Structural Recurrent Neural Networks (RNNs) to learn factor functions and take advantage of both the high-level structure of graphical models and the sequence modeling power of RNNs, which we expect to afford more transparent modeling and activity than opaque, single RNN models. To demonstrate our approach, we validate our model using authentic interstate highway driving to predict the future lane change maneuvers of other vehicles neighboring our autonomous vehicle. We find that our composite Structural RNN outperforms baselines by as much as 12% in balanced accuracy metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sajan Patel (1 paper)
  2. Brent Griffin (6 papers)
  3. Kristofer Kusano (1 paper)
  4. Jason J. Corso (71 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.