Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional-network models to predict wall-bounded turbulence from wall quantities (2006.12483v1)

Published 22 Jun 2020 in physics.flu-dyn, physics.comp-ph, and stat.ML

Abstract: Two models based on convolutional neural networks are trained to predict the two-dimensional velocity-fluctuation fields at different wall-normal locations in a turbulent open channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully-convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), hence named FCN-POD. Both models are trained using data from two direct numerical simulations (DNS) at friction Reynolds numbers $Re_{\tau} = 180$ and $550$. Thanks to their ability to predict the nonlinear interactions in the flow, both models show a better prediction performance than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between input and output fields. The performance of the various models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. The FCN exhibits the best predictions closer to the wall, whereas the FCN-POD model provides better predictions at larger wall-normal distances. We also assessed the feasibility of performing transfer learning for the FCN model, using the weights from $Re_{\tau}=180$ to initialize those of the $Re_{\tau}=550$ case. Our results indicate that it is possible to obtain a performance similar to that of the reference model up to $y{+}=50$, with $50\%$ and $25\%$ of the original training data. These non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. L. Guastoni (7 papers)
  2. A. Güemes (3 papers)
  3. A. Ianiro (5 papers)
  4. S. Discetti (5 papers)
  5. P. Schlatter (20 papers)
  6. H. Azizpour (8 papers)
  7. R. Vinuesa (22 papers)
Citations (157)

Summary

We haven't generated a summary for this paper yet.