Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression (2006.12459v2)

Published 22 Jun 2020 in cs.LG and stat.ML

Abstract: In this paper we analyse and improve integer discrete flows for lossless compression. Integer discrete flows are a recently proposed class of models that learn invertible transformations for integer-valued random variables. Their discrete nature makes them particularly suitable for lossless compression with entropy coding schemes. We start by investigating a recent theoretical claim that states that invertible flows for discrete random variables are less flexible than their continuous counterparts. We demonstrate with a proof that this claim does not hold for integer discrete flows due to the embedding of data with finite support into the countably infinite integer lattice. Furthermore, we zoom in on the effect of gradient bias due to the straight-through estimator in integer discrete flows, and demonstrate that its influence is highly dependent on architecture choices and less prominent than previously thought. Finally, we show how different architecture modifications improve the performance of this model class for lossless compression, and that they also enable more efficient compression: a model with half the number of flow layers performs on par with or better than the original integer discrete flow model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Rianne van den Berg (22 papers)
  2. Alexey A. Gritsenko (6 papers)
  3. Mostafa Dehghani (64 papers)
  4. Casper Kaae Sønderby (8 papers)
  5. Tim Salimans (46 papers)
Citations (57)

Summary

We haven't generated a summary for this paper yet.