Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training (Overparametrized) Neural Networks in Near-Linear Time (2006.11648v2)

Published 20 Jun 2020 in cs.LG, cs.DS, and stat.ML

Abstract: The slow convergence rate and pathological curvature issues of first-order gradient methods for training deep neural networks, initiated an ongoing effort for developing faster $\mathit{second}$-$\mathit{order}$ optimization algorithms beyond SGD, without compromising the generalization error. Despite their remarkable convergence rate ($\mathit{independent}$ of the training batch size $n$), second-order algorithms incur a daunting slowdown in the $\mathit{cost}$ $\mathit{per}$ $\mathit{iteration}$ (inverting the Hessian matrix of the loss function), which renders them impractical. Very recently, this computational overhead was mitigated by the works of [ZMG19,CGH+19}, yielding an $O(mn2)$-time second-order algorithm for training two-layer overparametrized neural networks of polynomial width $m$. We show how to speed up the algorithm of [CGH+19], achieving an $\tilde{O}(mn)$-time backpropagation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension ($mn$) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate the Gauss-Newton iteration as an $\ell_2$-regression problem, and then use a Fast-JL type dimension reduction to $\mathit{precondition}$ the underlying Gram matrix in time independent of $M$, allowing to find a sufficiently good approximate solution via $\mathit{first}$-$\mathit{order}$ conjugate gradient. Our result provides a proof-of-concept that advanced machinery from randomized linear algebra -- which led to recent breakthroughs in $\mathit{convex}$ $\mathit{optimization}$ (ERM, LPs, Regression) -- can be carried over to the realm of deep learning as well.

Citations (78)

Summary

We haven't generated a summary for this paper yet.