Papers
Topics
Authors
Recent
Search
2000 character limit reached

(Non)-neutrality of science and algorithms: Machine Learning between fundamental physics and society

Published 27 May 2020 in physics.soc-ph, cs.CY, and physics.hist-ph | (2006.10745v1)

Abstract: The impact of Machine Learning (ML) algorithms in the age of big data and platform capitalism has not spared scientific research in academia. In this work, we will analyse the use of ML in fundamental physics and its relationship to other cases that directly affect society. We will deal with different aspects of the issue, from a bibliometric analysis of the publications, to a detailed discussion of the literature, to an overview on the productive and working context inside and outside academia. The analysis will be conducted on the basis of three key elements: the non-neutrality of science, understood as its intrinsic relationship with history and society; the non-neutrality of the algorithms, in the sense of the presence of elements that depend on the choices of the programmer, which cannot be eliminated whatever the technological progress is; the problematic nature of a paradigm shift in favour of a data-driven science (and society). The deconstruction of the presumed universality of scientific thought from the inside becomes in this perspective a necessary first step also for any social and political discussion. This is the subject of this work in the case study of ML.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.