Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Sensitivity Bounds for Nonlinear Programming and Time-varying Optimization (2006.10693v1)

Published 18 Jun 2020 in math.OC, cs.SY, and eess.SY

Abstract: Inspired by classical sensitivity results for nonlinear optimization, we derive and discuss new quantitative bounds to characterize the solution map and dual variables of a parametrized nonlinear program. In particular, we derive explicit expressions for the local and global Lipschitz constants of the solution map of non-convex or convex optimization problems, respectively. Our results are geared towards the study of time-varying optimization problems which are commonplace in various applications of online optimization, including power systems, robotics, signal processing and more. In this context, our results can be used to bound the rate of change of the optimizer. To illustrate the use of our sensitivity bounds we generalize existing arguments to quantify the tracking performance of continuous-time, monotone running algorithms. Further, we introduce a new continuous-time running algorithm for time-varying constrained optimization which we model as a so-called perturbed sweeping process. For this discontinuous scheme, we establish an explicit bound on the asymptotic solution tracking for a class of convex problems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.