Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Polynomial-reproducing spline spaces from fine zonotopal tilings (2006.10307v3)

Published 18 Jun 2020 in math.NA and cs.NA

Abstract: Given a point configuration A, we uncover a connection between polynomial-reproducing spline spaces over subsets of conv(A) and fine zonotopal tilings of the zonotope Z(V) associated to the corresponding vector configuration. This link directly generalizes a known result on Delaunay configurations and naturally encompasses, due to its combinatorial character, the case of repeated and affinely dependent points in A. We prove the existence of a general iterative construction process for such spaces. Finally, we turn our attention to regular fine zonotopal tilings, specializing our previous results and exploiting the adjacency graph of the tiling to propose a set of practical algorithms for the construction and evaluation of the associated spline functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.