Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Analysis-suitable T-splines: characterization, refineability, and approximation (1211.5669v1)

Published 24 Nov 2012 in cs.GR

Abstract: We establish several fundamental properties of analysis-suitable T-splines which are important for design and analysis. First, we characterize T-spline spaces and prove that the space of smooth bicubic polynomials, defined over the extended T-mesh of an analysis-suitable T-spline, is contained in the corresponding analysis-suitable T-spline space. This is accomplished through the theory of perturbed analysis-suitable T-spline spaces and a simple topological dimension formula. Second, we establish the theory of analysis-suitable local refinement and describe the conditions under which two analysis-suitable T-spline spaces are nested. Last, we demonstrate that these results can be used to establish basic approximation results which are critical for analysis.

Citations (99)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)