Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existential Theory of the Reals Completeness of Stationary Nash Equilibria in Perfect Information Stochastic Games (2006.08314v2)

Published 15 Jun 2020 in cs.GT and cs.CC

Abstract: We show that the problem of deciding whether in a multi-player perfect information recursive game (i.e. a stochastic game with terminal rewards) there exists a stationary Nash equilibrium ensuring each player a certain payoff is Existential Theory of the Reals complete. Our result holds for acyclic games, where a Nash equilibrium may be computed efficiently by backward induction, and even for deterministic acyclic games with non-negative terminal rewards. We further extend our results to the existence of Nash equilibria where a single player is surely winning. Combining our result with known gadget games without any stationary Nash equilibrium, we obtain that for cyclic games, just deciding existence of any stationary Nash equilibrium is Existential Theory of the Reals complete. This holds for reach-a-set games, stay-in-a-set games, and for deterministic recursive games.

Citations (1)

Summary

We haven't generated a summary for this paper yet.