Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry (2006.07814v4)

Published 14 Jun 2020 in stat.ML, cs.LG, and math.PR

Abstract: The Fisher information matrix (FIM) is fundamental to understanding the trainability of deep neural nets (DNN), since it describes the parameter space's local metric. We investigate the spectral distribution of the conditional FIM, which is the FIM given a single sample, by focusing on fully-connected networks achieving dynamical isometry. Then, while dynamical isometry is known to keep specific backpropagated signals independent of the depth, we find that the parameter space's local metric linearly depends on the depth even under the dynamical isometry. More precisely, we reveal that the conditional FIM's spectrum concentrates around the maximum and the value grows linearly as the depth increases. To examine the spectrum, considering random initialization and the wide limit, we construct an algebraic methodology based on the free probability theory. As a byproduct, we provide an analysis of the solvable spectral distribution in two-hidden-layer cases. Lastly, experimental results verify that the appropriate learning rate for the online training of DNNs is in inverse proportional to depth, which is determined by the conditional FIM's spectrum.

Citations (7)

Summary

We haven't generated a summary for this paper yet.