Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pathological spectra of the Fisher information metric and its variants in deep neural networks (1910.05992v2)

Published 14 Oct 2019 in stat.ML, cond-mat.dis-nn, and cs.LG

Abstract: The Fisher information matrix (FIM) plays an essential role in statistics and machine learning as a Riemannian metric tensor or a component of the Hessian matrix of loss functions. Focusing on the FIM and its variants in deep neural networks (DNNs), we reveal their characteristic scale dependence on the network width, depth and sample size when the network has random weights and is sufficiently wide. This study covers two widely-used FIMs for regression with linear output and for classification with softmax output. Both FIMs asymptotically show pathological eigenvalue spectra in the sense that a small number of eigenvalues become large outliers depending the width or sample size while the others are much smaller. It implies that the local shape of the parameter space or loss landscape is very sharp in a few specific directions while almost flat in the other directions. In particular, the softmax output disperses the outliers and makes a tail of the eigenvalue density spread from the bulk. We also show that pathological spectra appear in other variants of FIMs: one is the neural tangent kernel; another is a metric for the input signal and feature space that arises from feedforward signal propagation. Thus, we provide a unified perspective on the FIM and its variants that will lead to more quantitative understanding of learning in large-scale DNNs.

Citations (25)

Summary

We haven't generated a summary for this paper yet.