Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Understanding as Machine Translation (2006.07203v2)

Published 12 Jun 2020 in cs.CV

Abstract: With the advent of large-scale multimodal video datasets, especially sequences with audio or transcribed speech, there has been a growing interest in self-supervised learning of video representations. Most prior work formulates the objective as a contrastive metric learning problem between the modalities. To enable effective learning, however, these strategies require a careful selection of positive and negative samples often combined with hand-designed curriculum policies. In this work we remove the need for negative sampling by taking a generative modeling approach that poses the objective as a translation problem between modalities. Such a formulation allows us to tackle a wide variety of downstream video understanding tasks by means of a single unified framework, without the need for large batches of negative samples common in contrastive metric learning. We experiment with the large-scale HowTo100M dataset for training, and report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT), and text-based clip retrieval (YouCook2 and MSR-VTT).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bruno Korbar (9 papers)
  2. Fabio Petroni (37 papers)
  3. Rohit Girdhar (43 papers)
  4. Lorenzo Torresani (73 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.