Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Robust Optimization and Inference on Manifolds (2006.06843v1)

Published 11 Jun 2020 in stat.ME, math.ST, and stat.TH

Abstract: We propose a robust and scalable procedure for general optimization and inference problems on manifolds leveraging the classical idea of `median-of-means' estimation. This is motivated by ubiquitous examples and applications in modern data science in which a statistical learning problem can be cast as an optimization problem over manifolds. Being able to incorporate the underlying geometry for inference while addressing the need for robustness and scalability presents great challenges. We address these challenges by first proving a key lemma that characterizes some crucial properties of geometric medians on manifolds. In turn, this allows us to prove robustness and tighter concentration of our proposed final estimator in a subsequent theorem. This estimator aggregates a collection of subset estimators by taking their geometric median over the manifold. We illustrate bounds on this estimator via calculations in explicit examples. The robustness and scalability of the procedure is illustrated in numerical examples on both simulated and real data sets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.