Backdoors in Neural Models of Source Code
Abstract: Deep neural networks are vulnerable to a range of adversaries. A particularly pernicious class of vulnerabilities are backdoors, where model predictions diverge in the presence of subtle triggers in inputs. An attacker can implant a backdoor by poisoning the training data to yield a desired target prediction on triggered inputs. We study backdoors in the context of deep-learning for source code. (1) We define a range of backdoor classes for source-code tasks and show how to poison a dataset to install such backdoors. (2) We adapt and improve recent algorithms from robust statistics for our setting, showing that backdoors leave a spectral signature in the learned representation of source code, thus enabling detection of poisoned data. (3) We conduct a thorough evaluation on different architectures and languages, showing the ease of injecting backdoors and our ability to eliminate them.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.