Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep generative models for musical audio synthesis (2006.06426v2)

Published 10 Jun 2020 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: Sound modelling is the process of developing algorithms that generate sound under parametric control. There are a few distinct approaches that have been developed historically including modelling the physics of sound production and propagation, assembling signal generating and processing elements to capture acoustic features, and manipulating collections of recorded audio samples. While each of these approaches has been able to achieve high-quality synthesis and interaction for specific applications, they are all labour-intensive and each comes with its own challenges for designing arbitrary control strategies. Recent generative deep learning systems for audio synthesis are able to learn models that can traverse arbitrary spaces of sound defined by the data they train on. Furthermore, machine learning systems are providing new techniques for designing control and navigation strategies for these models. This paper is a review of developments in deep learning that are changing the practice of sound modelling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. M. Huzaifah (4 papers)
  2. L. Wyse (4 papers)
Citations (19)