Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ICGAN: An implicit conditioning method for interpretable feature control of neural audio synthesis (2406.07131v1)

Published 11 Jun 2024 in cs.SD and eess.AS

Abstract: Neural audio synthesis methods can achieve high-fidelity and realistic sound generation by utilizing deep generative models. Such models typically rely on external labels which are often discrete as conditioning information to achieve guided sound generation. However, it remains difficult to control the subtle changes in sounds without appropriate and descriptive labels, especially given a limited dataset. This paper proposes an implicit conditioning method for neural audio synthesis using generative adversarial networks that allows for interpretable control of the acoustic features of synthesized sounds. Our technique creates a continuous conditioning space that enables timbre manipulation without relying on explicit labels. We further introduce an evaluation metric to explore controllability and demonstrate that our approach is effective in enabling a degree of controlled variation of different synthesized sound effects for in-domain and cross-domain sounds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yunyi Liu (10 papers)
  2. Craig Jin (6 papers)