Random Van der Waerden Theorem (2006.05412v2)
Abstract: In this paper we prove the Random Van der Waerden Theorem: For $q_1 \geq q_2 \geq \dotsb \geq q_r \geq 3 \in \mathbb{N}$ there exist $c,C >0$ such that [ \lim_{n \to \infty} \mathbb{P}([n]_p \rightarrow (q_1,\dotsc, q_r)) = \begin{cases} 1 & \text{if } p \geq C \cdot n{-\frac{q_2}{q_1(q_2-1)}}, 0 & \text{if } p \leq c \cdot n{-\frac{q_2}{q_1(q_2-1)}}, \end{cases}] extending the results of R\"odl and Ruci\'nski for the symmetric case $q_i = q$. The proof for the 1-statement is based on the Hypergraph Container Method by Balogh, Morris and Samotij and Saxton and Thomason. The proof for the 0-statement is an extension of R\"odl and Ruci\'nski's argument for the symmetric case.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.