Papers
Topics
Authors
Recent
2000 character limit reached

On the Gap between Scalar and Vector Solutions of Generalized Combination Networks

Published 8 Jun 2020 in cs.IT, cs.NI, cs.SI, math.CO, and math.IT | (2006.04870v3)

Abstract: We study scalar-linear and vector-linear solutions of the generalized combination network. We derive new upper and lower bounds on the maximum number of nodes in the middle layer, depending on the network parameters and the alphabet size. These bounds improve and extend the parameter range of known bounds. Using these new bounds we present a lower bound and an upper bound on the gap in the alphabet size between optimal scalar-linear and optimal vector-linear network coding solutions. For a fixed network structure, while varying the number of middle-layer nodes $r$, the asymptotic behavior of the upper and lower bounds shows that the gap is in $\Theta(\log(r))$.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.