Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network-Coding Solutions for Minimal Combination Networks and Their Sub-networks (1901.01058v2)

Published 4 Jan 2019 in cs.IT and math.IT

Abstract: Minimal multicast networks are fascinating and efficient combinatorial objects, where the removal of a single link makes it impossible for all receivers to obtain all messages. We study the structure of such networks, and prove some constraints on their possible solutions. We then focus on the combination network, which is one of the simplest and most insightful network in network-coding theory. Of particular interest are minimal combination networks. We study the gap in alphabet size between vector-linear and scalar-linear network-coding solutions for such minimal combination networks and some of their sub-networks. For minimal multicast networks with two source messages we find the maximum possible gap. We define and study sub-networks of the combination network, which we call Kneser networks, and prove that they attain the upper bound on the gap with equality. We also prove that the study of this gap may be limited to the study of sub-networks of minimal combination networks, by using graph homomorphisms connected with the $q$-analog of Kneser graphs. Additionally, we prove a gap for minimal multicast networks with three or more source messages by studying Kneser networks. Finally, an upper bound on the gap for full minimal combination networks shows nearly no gap, or none in some cases. This is obtained using an MDS-like bound for subspaces over a finite field.

Citations (4)

Summary

We haven't generated a summary for this paper yet.