Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BERT Based Multilingual Machine Comprehension in English and Hindi (2006.01432v1)

Published 2 Jun 2020 in cs.CL

Abstract: Multilingual Machine Comprehension (MMC) is a Question-Answering (QA) sub-task that involves quoting the answer for a question from a given snippet, where the question and the snippet can be in different languages. Recently released multilingual variant of BERT (m-BERT), pre-trained with 104 languages, has performed well in both zero-shot and fine-tuned settings for multilingual tasks; however, it has not been used for English-Hindi MMC yet. We, therefore, present in this article, our experiments with m-BERT for MMC in zero-shot, mono-lingual (e.g. Hindi Question-Hindi Snippet) and cross-lingual (e.g. English QuestionHindi Snippet) fine-tune setups. These model variants are evaluated on all possible multilingual settings and results are compared against the current state-of-the-art sequential QA system for these languages. Experiments show that m-BERT, with fine-tuning, improves performance on all evaluation settings across both the datasets used by the prior model, therefore establishing m-BERT based MMC as the new state-of-the-art for English and Hindi. We also publish our results on an extended version of the recently released XQuAD dataset, which we propose to use as the evaluation benchmark for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Somil Gupta (5 papers)
  2. Nilesh Khade (1 paper)
Citations (13)

Summary

We haven't generated a summary for this paper yet.