Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Global Solutions of the Compressible Euler Equations with Large Initial Data of Spherical Symmetry and Positive Far-Field Density (2005.13725v4)

Published 28 May 2020 in math.AP, math-ph, math.MP, and physics.flu-dyn

Abstract: We are concerned with the global existence theory for spherically symmetric solutions of the multidimensional compressible Euler equations with large initial data of positive far-field density. The central feature of the solutions is the strengthening of waves as they move radially inward toward the origin. Various examples have shown that the spherically symmetric solutions of the Euler equations blow up near the origin at certain time. A fundamental unsolved problem is whether the density of the global solution would form concentration to become a measure near the origin for the case when the total initial-energy is unbounded and the wave propagation is not at a finite speed starting initially. In this paper, we establish a global existence theory for spherically symmetric solutions of the compressible Euler equations with large initial data of positive far-field density and relative finite-energy. This is achieved by developing a new approach via adapting a class of degenerate density-dependent viscosity terms, so that a rigorous proof of the vanishing viscosity limit of global weak solutions of the Navier-Stokes equations with the density-dependent viscosity terms to the corresponding global solution of the Euler equations with large initial data of spherical symmetry and positive far-field density can be obtained. One of our main observations is that the adapted class of degenerate density-dependent viscosity terms not only includes the viscosity terms for the Navier-Stokes equations for shallow water (Saint Venant) flows but also, more importantly, is suitable to achieve our key objective of this paper. These results indicate that concentration is not formed in the vanishing viscosity limit for the Navier-Stokes approximations constructed in this paper even when the total initial-energy is unbounded.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.