Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A second-order accurate semi-Lagrangian method for convection-diffusion equations with interfacial jumps (2005.13717v1)

Published 28 May 2020 in math.NA, cs.NA, and physics.comp-ph

Abstract: In this paper, we present a second-order accurate finite-difference method for solving convectiondiffusion equations with interfacial jumps on a moving interface. The proposed method is constructed under a semi-Lagrangian framework for convection-diffusion equations; a novel interpolation scheme is developed in the presence of jump conditions. Combined with a second-order ghost fluid method [3], a sharp capturing method with a first-order local truncation error near the interface and second-order truncation error away from the interface is developed for the convectiondiffusion equation. In addition, a level-set advection algorithm is presented when the velocity gradient jumps across the interface. Numerical experiments support the conclusion that the proposed methods for convection-diffusion equations and level-set advection are necessary for the second-order convergence solution and the interface position.

Citations (1)

Summary

We haven't generated a summary for this paper yet.