Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second order convergence of a modified MAC scheme for Stokes interface problems (2302.08033v1)

Published 16 Feb 2023 in math.NA and cs.NA

Abstract: Stokes flow equations have been implemented successfully in practice for simulating problems with moving interfaces. Though computational methods produce accurate solutions and numerical convergence can be demonstrated using a resolution study, the rigorous convergence proofs are usually limited to particular reformulations and boundary conditions. In this paper, a rigorous error analysis of the marker and cell (MAC) scheme for Stokes interface problems with constant viscosity in the framework of the finite difference method is presented. Without reformulating the problem into elliptic PDEs, the main idea is to use a discrete Ladyzenskaja-Babuska-Brezzi (LBB) condition and construct auxiliary functions, which satisfy discretized Stokes equations and possess at least second order accuracy in the neighborhood of the moving interface. In particular, the method, for the first time, enables one to prove second order convergence of the velocity gradient in the discrete $\ell2$-norm, in addition to the velocity and pressure fields. Numerical experiments verify the desired properties of the methods and the expected order of accuracy for both two-dimensional and three-dimensional examples.

Citations (6)

Summary

We haven't generated a summary for this paper yet.