Multiplicative independence of modular functions
Abstract: We provide a new, elementary proof of the multiplicative independence of pairwise distinct $\mathrm{GL}2+(\mathbb{Q})$-translates of the modular $j$-function, a result due originally to Pila and Tsimerman. We are thereby able to generalise this result to a wider class of modular functions. We show that this class includes a set comprising modular functions which arise naturally as Borcherds lifts of certain weakly holomorphic modular forms. For $f$ a modular function belonging to this class, we deduce, for each $n \geq 1$, the finiteness of $n$-tuples of distinct $f$-special points that are multiplicatively dependent and minimal for this property. This generalises a theorem of Pila and Tsimerman on singular moduli. We then show how these results relate to the Zilber--Pink conjecture for subvarieties of the mixed Shimura variety $Y(1)n \times \mathbb{G}{\mathrm{m}}n$ and prove some special cases of this conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.