Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Who is this Explanation for? Human Intelligence and Knowledge Graphs for eXplainable AI (2005.13275v1)

Published 27 May 2020 in cs.HC and cs.AI

Abstract: eXplainable AI focuses on generating explanations for the output of an AI algorithm to a user, usually a decision-maker. Such user needs to interpret the AI system in order to decide whether to trust the machine outcome. When addressing this challenge, therefore, proper attention should be given to produce explanations that are interpretable by the target community of users. In this chapter, we claim for the need to better investigate what constitutes a human explanation, i.e. a justification of the machine behaviour that is interpretable and actionable by the human decision makers. In particular, we focus on the contributions that Human Intelligence can bring to eXplainable AI, especially in conjunction with the exploitation of Knowledge Graphs. Indeed, we call for a better interplay between Knowledge Representation and Reasoning, Social Sciences, Human Computation and Human-Machine Cooperation research -- as already explored in other AI branches -- in order to support the goal of eXplainable AI with the adoption of a Human-in-the-Loop approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Irene Celino (15 papers)
Citations (5)