Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Out-of-Core GPU Gradient Boosting (2005.09148v1)

Published 19 May 2020 in cs.LG, cs.DC, and stat.ML

Abstract: GPU-based algorithms have greatly accelerated many machine learning methods; however, GPU memory is typically smaller than main memory, limiting the size of training data. In this paper, we describe an out-of-core GPU gradient boosting algorithm implemented in the XGBoost library. We show that much larger datasets can fit on a given GPU, without degrading model accuracy or training time. To the best of our knowledge, this is the first out-of-core GPU implementation of gradient boosting. Similar approaches can be applied to other machine learning algorithms

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com