Papers
Topics
Authors
Recent
2000 character limit reached

Categorical traces and a relative Lefschetz-Verdier formula

Published 18 May 2020 in math.AG and math.CT | (2005.08522v4)

Abstract: We prove a relative Lefschetz-Verdier theorem for locally acyclic objects over a Noetherian base scheme. This is done by studying duals and traces in the symmetric monoidal $2$-category of cohomological correspondences. We show that local acyclicity is equivalent to dualizability and deduce that duality preserves local acyclicity. As another application of the category of cohomological correspondences, we show that the nearby cycle functor over a Henselian valuation ring preserves duals, generalizing a theorem of Gabber.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.