Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propagation time for weighted zero forcing (2005.07316v1)

Published 15 May 2020 in math.CO and cs.DM

Abstract: Zero forcing is a graph coloring process that was defined as a tool for bounding the minimum rank and maximum nullity of a graph. It has also been used for studying control of quantum systems and monitoring electrical power networks. One of the problems from the 2017 AIM workshop "Zero forcing and its applications" was to explore edge-weighted probabilistic zero forcing, where edges have weights that determine the probability of a successful force if forcing is possible under the standard zero forcing coloring rule. In this paper, we investigate the expected time to complete the weighted zero forcing coloring process, known as the expected propagation time, as well as the time for the process to be completed with probability at least $\alpha$, known as the $\alpha$-confidence propagation time. We demonstrate how to find the expected and confidence propagation times of any edge-weighted graph using Markov matrices. We also determine the expected and confidence propagation times for various families of edge-weighted graphs including complete graphs, stars, paths, and cycles.

Summary

We haven't generated a summary for this paper yet.