Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on expected propagation time of probabilistic zero forcing (1909.04482v3)

Published 10 Sep 2019 in math.CO and cs.DM

Abstract: Probabilistic zero forcing is a coloring game played on a graph where the goal is to color every vertex blue starting with an initial blue vertex set. As long as the graph is connected, if at least one vertex is blue then eventually all of the vertices will be colored blue. The most studied parameter in probabilistic zero forcing is the expected propagation time starting from a given vertex of $G.$ In this paper we improve on upper bounds for the expected propagation time by Geneson and Hogben and Chan et al. in terms of a graph's order and radius. In particular, for a connected graph $G$ of order $n$ and radius $r,$ we prove the bound $\text{ept}(G) = O(r\log(n/r)).$ We also show using Doob's Optional Stopping Theorem and a combinatorial object known as a cornerstone that $\text{ept}(G) \le n/2 + O(\log n).$ Finally, we derive an explicit lower bound $\text{ept}(G)\ge \log_2 \log_2 n.$

Citations (6)

Summary

We haven't generated a summary for this paper yet.