Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On a probabilistic local-global principle for torsion on elliptic curves (2005.06669v3)

Published 13 May 2020 in math.NT

Abstract: Let $m$ be a positive integer and let $E$ be an elliptic curve over $\mathbb{Q}$ with the property that $m\mid#E(\mathbb{F}_p)$ for a density $1$ set of primes $p$. Building upon work of Katz and Harron-Snowden, we study the probability that $m$ divides the the order of the torsion subgroup of $E(\mathbb{Q})$: we find it is nonzero for all $m \in { 1, 2, \dots, 10, 12, 16}$ and we compute it exactly when $m \in { 1,2,3,4,5,7 }$. As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve arises from the quotient by a torsion-free group of genus zero.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.