Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmented resolution of linear hyperbolic systems under nonconservative form (2005.06007v1)

Published 12 May 2020 in math.NA and cs.NA

Abstract: Hyperbolic systems under nonconservative form arise in numerous applications modeling physical processes, for example from the relaxation of more general equations (e.g. with dissipative terms). This paper reviews an existing class of augmented Roe schemes and discusses their application to linear nonconservative hyperbolic systems with source terms. We extend existing augmented methods by redefining them within a common framework which uses a geometric reinterpretation of source terms. This results in intrinsically well-balanced numerical discretizations. We discuss two equivalent formulations: (1) a nonconservative approach and (2) a conservative reformulation of the problem. The equilibrium properties of the schemes are examined and the conditions for the preservation of the well-balanced property are provided. Transient and steady state test cases for linear acoustics and hyperbolic heat equations are presented. A complete set of benchmark problems with analytical solution, including transient and steady situations with discontinuities in the medium properties, are presented and used to assess the equilibrium properties of the schemes. It is shown that the proposed schemes satisfy the expected equilibrium and convergence properties.

Summary

We haven't generated a summary for this paper yet.