Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Growth of Sibony metric and Bergman kernel for domains with low regularity (2005.04479v2)

Published 9 May 2020 in math.CV

Abstract: It is shown that even a weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with $\mathcal C1$ boundary: the product of the Bergman kernel by the volume of the indicatrix of the Azukawa metric is not bounded below. This is obtained by finding a direction along which the Sibony metric tends to infinity as the base point tends to the boundary. The analogous statement fails for a Lipschitz boundary. For a general $\mathcal C1$ boundary, we give estimates for the Sibony metric in terms of some directional distance functions. For bounded pseudoconvex domains, the Blocki-Zwonek Suita-type theorem implies growth to infinity of the Bergman kernel; the fact that the Bergman kernel grows as the square of the reciprocal of the distance to the boundary, proved by S. Fu in the $\mathcal C2$ case, is extended to bounded pseudoconvex domains with Lipschitz boundaries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.