Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Building Knowledge by Merging Multiple Ontologies with CoMerger: A Partitioning-based Approach (2005.02659v1)

Published 6 May 2020 in cs.AI

Abstract: Ontologies are the prime way of organizing data in the Semantic Web. Often, it is necessary to combine several, independently developed ontologies to obtain a knowledge graph fully representing a domain of interest. The complementarity of existing ontologies can be leveraged by merging them. Existing approaches for ontology merging mostly implement a binary merge. However, with the growing number and size of relevant ontologies across domains, scalability becomes a central challenge. A multi-ontology merging technique offers a potential solution to this problem. We present CoMerger, a scalable multiple ontologies merging method. For efficient processing, rather than successively merging complete ontologies pairwise, we group related concepts across ontologies into partitions and merge first within and then across those partitions. The experimental results on well-known datasets confirm the feasibility of our approach and demonstrate its superiority over binary strategies. A prototypical implementation is freely accessible through a live web portal.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samira Babalou (2 papers)
  2. Birgitta König-Ries (13 papers)
Citations (6)