Papers
Topics
Authors
Recent
Search
2000 character limit reached

Online Convex Optimization with Binary Constraints

Published 5 May 2020 in math.OC and cs.LG | (2005.02274v3)

Abstract: We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent (bOGD) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response. The simulations corroborate that the use of randomization in bOGD does not significantly degrade performance while making the problem more tractable.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.